Bezier curves based on Lupas (p, q)-analogue of Bernstein polynomials in CAGD
نویسندگان
چکیده
In this paper, we use the blending functions of Lupaş type (rational) (p, q)-Bernstein operators based on (p, q)-integers for construction of Lupaş (p, q)-Bézier curves (rational curves) and surfaces (rational surfaces) with shape parameters. We study the nature of degree elevation and degree reduction for Lupaş (p, q)-Bézier Bernstein functions. Parametric curves are represented using Lupaş (p, q)-Bernstein basis.
منابع مشابه
Degree Elevation of Interval Bezier Curves Using Legendre-Bernstein Basis Transformations
This paper presents a simple matrix form for degree elevation of interval Bezier curve using LegendreBernstein basis transformations. The four fixed Kharitonov's polynomials (four fixed Bezier curves) associated with the original interval Bezier curve are obtained. These four fixed Bezier curves are expressed in terms of the Legendre polynomials. The process of degree elevations r times are app...
متن کاملA de Casteljau Algorithm for Bernstein type Polynomials based on (p, q)-integers in CAGD
In this paper, a de Casteljau algorithm to compute (p, q)-Bernstein Bézier curves based on (p, q)integers is introduced. We study the nature of degree elevation and degree reduction for (p, q)-Bézier Bernstein functions. The new curves have some properties similar to q-Bézier curves. Moreover, we construct the corresponding tensor product surfaces over the rectangular domain (u, v) ∈ [0, 1]× [0...
متن کاملDegree Reduction of Interval SB Curves
Ball basis was introduced for cubic polynomials by Ball, and was generalized for polynomials of higher degree by Said. An algorithmic approach to degree reduction of interval Said-Ball (SB) curve is presented in this paper. The four fixed Kharitonov's polynomials (four fixed SB curves) associated with the original interval SB curve are obtained. These four fixed SB curves are transformed into f...
متن کاملBezier curves
i=0 aix , ai ∈ R. We will denote by πn the linear (vector) space of all such polynomials. The actual degree of p is the largest i for which ai is non-zero. The functions 1, x, . . . , x form a basis for πn, known as the monomial basis, and the dimension of the space πn is therefore n + 1. Bernstein polynomials are an alternative basis for πn, and are used to construct Bezier curves. The i-th Be...
متن کاملDegree Reduction of Interval WB Curves
Wang-Ball (WB) curve is one of the generalized cubic Ball basis which was first put forward in CONSURF system by Ball. Wang extended it to arbitrary odd and even degrees. An algorithmic approach to degree reduction of interval Wang-Ball curve is presented in this paper. The four fixed Kharitonov's polynomials (four fixed WB curves) associated with the original interval WB curve are obtained. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.01810 شماره
صفحات -
تاریخ انتشار 2015